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Abstract

Retrieval-augmented Neural Machine Trans-

lation models have been successful in many

translation scenarios. Different from previ-

ous works that make use of mutually similar

but redundant translation memories (TMs), we

propose a new retrieval-augmented NMT to

model contrastively retrieved translation mem-

ories that are holistically similar to the source

sentence while individually contrastive to each

other providing maximal information gains in

three phases. First, in TM retrieval phase, we

adopt a contrastive retrieval algorithm to avoid

redundancy and uninformativeness of similar

translation pieces. Second, in memory en-

coding stage, given a set of TMs we propose

a novel Hierarchical Group Attention module

to gather both local context of each TM and

global context of the whole TM set. Finally, in

training phase, a Multi-TM contrastive learn-

ing objective is introduced to learn salient fea-

ture of each TM with respect to target sentence.

Experimental results show that our framework

obtains improvements over strong baselines on

the benchmark datasets.

1 Introduction

Translation memory (TM) is basically a database

of segmented and paired source and target texts

that translators can access in order to re-use previ-

ous translations while translating new texts (Chris-

tensen and Schjoldager, 2010). For human trans-

lators, such similar translation pieces can lead

to higher productivity and consistency (Yamada,

2011). For machine translation, early works mainly

contributes to employ TM for statistical machine

translation (SMT) systems (Simard and Isabelle,

2009; Utiyama et al., 2011; Liu et al., 2012, 2019).

Recently, as neural machine translation (NMT)

model (Sutskever et al., 2014; Vaswani et al., 2017)

has achieved impressive performance in many

∗Corresponding author.

TM1: What is your favorite snack ?
TM2: What is your favorite car ?
TM3: What is your favorite movie ?

(a) Greedy Retrieval

Source: What is your favorite sport?

Similarity
0.97
0.97
0.97

TM1: What is your favorite snack ?
TM2: What sport might be your favorite ?
TM3: Which sport do you like best ?

(b) Contrastive Retrieval
0.97
0.89
0.81
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Figure 1: An example of Greedy Retrieval and Con-

trastive Retrieval. The similarity score is computed by

edit distance detailed in Section 3.1. And the target side

of TM is omitted for brevity.

translation tasks, there is also an emerging inter-

est (Gu et al., 2018) in retrieval-augmented NMT

model.

The key idea of retrieval-augmented NMT

mainly includes two steps: a retrieval metric is used

to retrieve similar translation pairs (i.e., TM), and

the TM is then integrated into an NMT model. In

the first step, a standard retrieval method greedily

chooses the most similar translation memory one

by one solely based on similarity with the source

sentence (namely Greedy Retrieval). This method

would inevitably retrieve translation memories that

are mutually similar but redundant and uninforma-

tive as shown in Figure 1. Intuitively, it is promis-

ing to retrieve a diverse translation memory which

would offer maximal coverage of the source sen-

tence and provide useful cues from different as-

pects. Unfortunately, empirical experiments in Gu

et al. (2018) show that a diverse translation mem-

ory only leads to negligible improvements. As a
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result, greedy retrieval is adopted in almost all later

studies (Cao and Xiong, 2018; Xia et al., 2019;

Xu et al., 2020; He et al., 2021; Cai et al., 2021;

Khandelwal et al., 2020).

This paper aims to ask an important question

whether diverse translation memories are bene-

ficial for retrieval-augmented NMT. To this end,

we propose a powerful retrieval-augmented NMT

model called Contrastive Memory Model which

takes into account diversity in translation mem-

ory from three ways. Specifically, (1) during

TM retrieval, inspired by Maximal Marginal Rel-

evance (MMR) (Carbonell and Goldstein, 1998),

we introduce a conceptually simple while empir-

ically useful retrieval method called Contrastive

Retrieval to find informative translation memories.

The core is to retrieve a cluster of translation mem-

ories that are similar to the source sentence while

contrastive to each other keeping inner-cluster uni-

formity in the latent semantic space, as shown in

Figure 1. (2) In TM encoding, given multiple trans-

lation memories, the local and global information

should both be captured by the translation model.

Separately encoding (Gu et al., 2018; He et al.,

2021; Cai et al., 2021) or treating them as a long

sequence (Xu et al., 2020) would inevitably lose

such hierarchical structure information. Thus, to

facilitate the direct communication between dif-

ferent translation memories for local information

and gather the global context via message passing

mechanism, we propose a Hierarchical Group At-

tention (HGA) module to encode the diverse memo-

ries. (3) In the model training phase, to learn salient

and distinct features of each TM with respect to

target sentence, we devise a novel Multi-TM Con-

trastive Learning objective (MTCL), which further

contributes to a uniformly distributed translation

memory cluster by forcing representation of every

translation memory to approach the sentence to be

translated while keep away from each other.

To verify the effectiveness of our framework, we

conduct extensive experiments on four benchmark

datasets, and observe substantial improvement over

strong baselines, proving that diverse translation

memories is indeed useful to NMT. Our main con-

tributions are:

• We answer an important question about

retrieval-augmented NMT, i.e., is diverse

translation memory beneficial for retrieval-

augmented NMT?

• We propose a diverse-TM-aware framework

to improve a retrieval-augmented NMT sys-

tem from three ways including TM retrieval,

TM encoding and model training.

• We conduct extensive experiments on four

translation directions, observing substantial

performance gains over strong baselines with

greedy retrieval.

2 Related Work

TM-augmented NMT Augmenting neural ma-

chine translation model with translation memories

is an important line of work to boost the perfor-

mance of the NMT model with non-parametric

method. Feng et al. (2017) stores memories of

infrequently encountered words and utilizes them

to assist the neural model. Gu et al. (2018) uses an

external memory network and a gating mechanism

to incorporate TM. Cao and Xiong (2018) uses

an extra GRU-based memory encoder to provide

additional information to the decoder. Xia et al.

(2019) adopts a compact graph representation of

TM and perform additional attention mechanisms

over the graph when decoding. Bulté and Tezcan

(2019) and Xu et al. (2020) directly concatenate

TM with source sentence using cross-lingual

vocabulary. Zhang et al. (2018) augments the

model with an additional bonus given to outputs

that contain the collected translation pieces. There

is also a line of work that trains a parametric

retrieval model and a translation model jointly (Cai

et al., 2021) and achieves impressive results.

Recently, with rapid growth of computational

power, a more fine grained token level translation

memories are use in Khandelwal et al. (2020). This

approach gives the decoder direct access to billions

of examples at test time, achieving state-of-the-art

result even without further training.

Contrastive Learning The key of contrastive

learning (Hadsell et al., 2006; Mikolov et al., 2013)

is to learn effective representation by pulling se-

mantically close neighbors together and pushing

apart non-neighbors. Chen et al. (2020) and He

et al. (2020) show that contrastive learning can

boost the performance of self-supervised and semi-

supervised learning in computer vision tasks. In

natural language processing, Word2Vec (Mikolov

et al., 2013) uses noise-contrastive estimation to

learn better word representation. Gao et al. (2021)

adopts contrastive learning with a simple token

level dropout to greatly advance the state-of-the-art



sentence embeddings. Liu and Liu (2021) uses con-

trastive loss to post-rank generated summaries and

achieves promising results in benchmark datasets.

Lee et al. (2020) and Pan et al. (2021) also use con-

trastive learning in translation tasks and observe

consistent improvements.

3 Proposed Framework

Preliminary Assuming we are given a source

sentence x = {x1, ..., xs} and its correspond-

ing target sentence y = {y1, ..., yt} where s, t

are their respective length. For a TM-augmented

NMT model, a set of similar translation pairs

M = {(xm, ym)}
|M |
m=1 are retrieved based on cer-

tain criterion C and NMT models the conditional

probability of target sentence y conditioned on both

source sentence x and translation memories M in

a left-to-right manner:

P (Y = y|X = x) =

|T |∏

t=1

P (yt|y0, ...yt−1;x;M)

(1)

Overview Given a source sentence x and infor-

mative translation memories M , the translation

model defines the conditional probability similar

to the Equation 1. At the high level, our frame-

work, as shown in Figure 2, consists of contrastive

retrieval, which searches a diverse translation mem-

ory, source encoder which transforms source sen-

tence x into dense vector representations zx, mem-

ory encoder with hierarchical group attention mod-

ule to jointly encode |M | translation memories

into a series dense representation zm and decoder

which attends to both zx and zm and generates tar-

get sentence y in an auto-regressive fashion, and

contrastive learning which effectively trains the

memory encoder as well as source encoder and de-

coder. Among all these five modules, contrastive

memory (§3.1), memory encoder (§3.3) and con-

trastive learing (§3.5) are key in our framework

compared with existing work of TM-augmented

NMT.

3.1 Contrastive Retrieval

In this stage, following previous work (Gu

et al., 2018) we first employ an off-the-shelf

full-text search engine, Apache Lucene, to get

a preliminary translation memory set K =

{(xk, yk)}
|K|
k=1 (|K| ≫ |M |) for every source sen-

tence. Notice that both source sentence x and

translation memory set K are from training set

D = {(xn, yn)}Nn=1, which means we do not in-

troduce any extra data during training. Then to be

directly comparable with previous works (Gu et al.,

2018; He et al., 2021) as discussed in Section 5

and considering the core of our method is similar-

ity function-agnostic as detailed below, we adopt a

sentence-level similarity function:

sim(x, x′) = 1−
Dedit(x, x

′)

max(|x|, |x′|)
(2)

where Dedit is the edit distance between two sen-

tences and |x| is the length of x. Specifically, we

would select |M | translation memories incremen-

tally and in every step we do not only measure the

similarity between current translation memory and

the source sentence but also take into considera-

tion the edit distance with those already retrieved

ones balanced by a hyperparameter α (namely con-

trastive factor). Different from MMR (Carbonell

and Goldstein, 1998), we treat retrieved translation

memories as a whole and take the average similar-

ity score as a penalty term:

argmax
xi∈K\M

[sim(x, xi)−
α

|M |

∑

xj∈M

sim(xi, xj)]

(3)

where M is the post-ranked translation memory

set. Finally, for every source sentence x, by ig-

noring the source side of M due to information

redundancy we have translation memories M =

{ym}
|M |
m=1.

3.2 Source Encoder

For a source sentence x = {x1, ..., xs}, our

source encoder is built upon the standard Trans-

former (Vaswani et al., 2017) architecture com-

posed of a token embedding layer, a sinusoidal po-

sitional embedding Layer and stacked transformer

encoder layers. Specifically we prepend a <bos>

token to source sentence and get the dense vector

representation zx as follows:

zx = SrcEnc(<bos>, x1, ...xs) (4)

3.3 Memory Encoder

Given a set of translation memories, the local con-

text of each TM and the global context of the whole

TM set should be captured by the model to fully

utilize this hierarchical structure information. Sepa-

rately encoding (Gu et al., 2018; Cai et al., 2021) or

treating them as a long sequence (Xu et al., 2020)



Figure 2: Overview of our framework: (1) Contrastive Retrieval (2) Source Encoder; (3) Memory Encoder with

Hierarchical Group Attention module (we only show three translation memories for brevity); (4) Decoder; (5)

Contrastive Learning.

would inevitably mask the model with this kind

of local and global schema. In this section, to

facilitate the direct communication between dif-

ferent translation memories for local information

and gather the global context via message passing

mechanism, we propose a Hierarchical Group At-

tention (HGA) module. Formally, given a cluster

of translation memories M = {ym}
|M |
m=1, where

each ym = {ym0 , ..., yknm
} is composed of nm to-

kens, for each ym we would like to create a fully

connected graph Gm = (V m, Em) where V m is

the token set. To facilitate inter-memory commu-

nication, we also create a super node vm∗ by con-

necting it with all other nodes (namely trivial node)

in that graph and then connect all super nodes to-

gether contributing to information flow among dif-

ferent translation memories in a hierarchical way

as shown in Figure 2. Then we adopt multi-head

self attention mechanism (Vaswani et al., 2017) as

message passing operator (Gilmer et al., 2017). For

every node vmi in the graph, their hidden state in

time step t+ 1 is updated by the hidden states of

its neighbours φ(vmi ) in time step t:

vmi |t+1 = SelfAttn(φ(vmi |t), v
m
i |t) (5)

To be computationally efficient, we use mask mech-

anism to block communication between nodes in

different graphs. For each trivial node vmi in Gm,

they update their hidden states by attending to all

trivial nodes as well as super node vm∗ . For vm∗ ,

it does not only exchange information within the

graph Gm, but also communicate with all other su-

per nodes {vi∗}
|M |
i=1. To stabilize training, we also

add residual connection and feed-forward Layer

after HGA module. After stacking multiple layers,

we get dense representation of translation memo-

ries:

zm = MemEnc(Concate{ym}
|M |
m=1) (6)

where |m| is the total length of |M | translation

memories and zm ∈ R
|m|×d.

3.4 Fusing TM in Decoding

To better incorporate the information from both

source sentence zx and translation memories zm,

we introduce a multi-reference decoder architec-

ture. For a target sentence y , we get a hidden

representation h = {h1, ..., ht} after token embed-

ding layer and masked self-attention layer, then we



use a cross attention layer to fuse information from

source sentence:

ĥ = CrossAttn(Add&Norm(h), zx, zx) (7)

Then for translation memories, we employ another

cross attention layer:

h = CrossAttn(Add&Norm(ĥ), zm, zm) (8)

After stacking multiple decoder layers, to further

exploit translation memories, we apply a copy mod-

ule (See et al., 2017; Gu et al., 2016) using the at-

tention score from the second cross attention layer

in the last sub-layer of decoder as a probability of

directly copying the corresponding token from the

translation memory. Formally, with t− 1 previous

generated tokens and hidden state ht, the decoder

computes t-th token probability as:

p(yt|·) = (1− pcopy)pv(yt) + pcopy

|zm|∑

i=1

αi✶zm
i
=yt

(9)

where pcopy = σ(MLP (ht, yt−1, α ⊗ zm)) , α is

the attention score, ⊗ is a Hadamard product and

✶ is the indicator function.

3.5 Multi-TM Contrastive Learning

The key of contrastive learning is to learn ef-

fective representation by pulling semantically

close neighbors together and pushing apart non-

neighbors (Hadsell et al., 2006; Mikolov et al.,

2013). As indicated in (Lee et al., 2020), sim-

ply choosing in-batch negatives would yield mean-

ingless negative examples that are already well-

discriminated in the embedding space and would

even cause performance degradation in translation

task (Lee et al., 2020), which also holds true in

our preliminary experiments. So how to devise

effective contrastive learning objective for a trans-

lation model with a cluster of translation memories

to learn salient features with respect to the target

sentence remains unexplored and challenging.

In this work, to make every translation mem-

ory learn distinct and useful feature representa-

tions with respect to current target sentence, we

propose a novel Multi-TM Contrastive Learning

(MTCL) objective which do not simply treat in-

batch samples as negative but instead keep aligned

with the principle of our contrastive retrieval, mak-

ing every translation memory approach the ground

truth translation while pushing apart from each

other. Formally, given a source sentence x, its cor-

responding target sentence y and translation mem-

ories M = {ym}
|M |
m=1. The goal of MTCL is to

minimize the following loss:

LMTCL = −
∑

yi∈M

log
esim(yi,y)/τ

∑
yj∈M esim(yj ,y)/τ

(10)

where sim(yi, y) is the cosine similarity between

the representation of target sentence y and transla-

tion memory yi given by memory encoder and τ is

a temperature hyperparameter which controls the

difficulties of distinguishing between positive and

negative samples (Pan et al., 2021). Notice that the

representation of each translation memory is the su-

per node vm∗ given by HGA module in Section 3.3,

which communicates with both intra-memory and

inter-memory nodes. Intuitively, by maximizing

the softmax term esim(yi,y)/τ , the contrastive loss

would force the representation of each translation

memories to approach the ground truth while push

apart from each other, delivering a uniformly dis-

tributed representation around the target sentence

in latent semantic space. In MTCL, all negative

samples are not from in-batch data but are differ-

ent translation memories for one source sentence,

which make up of non-trivial negative samples and

help the model to learn the subtle difference be-

tween multiple translation memories.

During the training phase, the model can be op-

timized by jointly minimizing the MTCL loss and

Cross Entropy loss as shown:

L = LCE + λLMTCL (11)

where λ is a balancing coefficient to measure the

importance of different objectives in a multi-task

learning scenario (Sener and Koltun, 2018).

4 Experimental Setup

4.1 Dataset and Evaluation

We use the JRC-Acquis (Steinberger et al., 2006)

corpus to evaluate our model. This corpus is a

collection of parallel legislative text of European

union Law applicable in the EU member states.

Highly related and well structured data make this

corpus an ideal test bed to evaluate the proposed

TM-augmented translation model. Following pre-

vious work, we use the same split of train/dev/test

set as in (Gu et al., 2018; Xia et al., 2019; Cai

et al., 2021; Xu et al., 2020; He et al., 2021). For

evaluation, we use SacreBLEU.



4.2 Implementation Details

Our model is named Contrastive Memory

Model (CMM). To implement CMM, we use trans-

former as building block of our model. Specifically,

we adopt the base configuration and the default op-

timization configuration as in Vaswani et al. (2017).

We use joint BPE encoding (Sennrich et al., 2016)

with vocab size 35000. We also adopt label smooth-

ing as 0.1 in all experiments. The number of to-

kens in every batch is 10000, which includes both

source sentence and translation memories. The

memory size and contrastive factor is set to be 5

and 0.7 across all translation directions. The con-

trastive temperature τ is {0.1, 0.08, 0.05, 0.15} for

Es→En, En→Es, De→En and En→De directions.

The balancing factor λ is set to be 1 1.

4.3 Baselines

CMM is compared with the following baselines:

• Vaswani et al. (2017): this is the original imple-

mentation of base transformer.

• Gu et al. (2018): this is a pioneer work of in-

tegrating translation memories into NMT system

using an external memories networks to separately

encode every translation memory

• Xu et al. (2020): this paper augments source

sentence with concatenation of TM and euqip the

model with different language embedding (FM+).

• Xia et al. (2019): this work uses a compact graph

to encode translation memories and is also based

on transformer architecture.

• Zhang et al. (2018): this work equips a NMT

model with translation pieces and extra bonus given

to outputs that contain the collected translation

pieces.

• Cai et al. (2021): this model first retrieves transla-

tion memories by source side similarity and adopts

a dual encoder architecture.

• He et al. (2021): this model incorporates one

most similar translation memory with proposed

example layer.

In addition, considering that Gu et al. (2018)

is based on Memory Network and RNN architec-

ture, to be fairly compared with transformer based

model, we re-implement two more direct baselines

(i.e., BaseGreedy and T-Ada) on top of Trans-

former with the same configuration as our CMM.

Specifically, in both baselines the original Mem-

ory Network is replaced by a transformer encoder

1Code and data is available at https://github.com/

Hannibal046/NMT_with_contrastive_memories

CMM T-Ada BaseGreedy

Avg. TM Size 5 5.68 5

Avg. Coverage 84.01% 92.11 % 81.13%

Avg. Similarity 0.89 0.84 0.91

Training Latency 1.21x 1.25x 1.21x

Inference Latency 1.44x 1.56x 1.44x

B
L

E
U

Es→En 67.76† 67.08 66.84

En→ES 64.04† 63.56 63.18

De→En 64.33† 63.81 63.84

En→De 58.69† 57.28 57.02

Table 1: Comparison between CMM, T-Ada and

BaseGreedy. The TM Size, Coverage and Similarity

is averaged among four translation directions. Cover-

age means the token level coverage of all translation

memories with respect to source sentence. Similarity

score is calculated as described in Section 3.1. † means

CMM is significantly better than baselines with p-value

< 0.01.

sharing weights with source encoder. BaseGreedy

employs greedy retrieval and it does not take diver-

sity of TM into account. In contrast, T-Ada adopts

adaptive retrieval, which finds the translation mem-

ories via maximizing the token coverage of source

sentence, and it promotes the diversity in retrieved

memory to some extent as CMM.

5 Experiment Results

5.1 Main results

Is diverse translation memory helpful? We

make a comparison with the direct baseline T-Ada

because both the proposed CMM and T-Ada pro-

mote the diversity in translation memory. As shown

in Table 1, T-Ada yields modest gains (about +0.2

BLEU points on average) over BaseGreedy on four

translation tasks, which is in line with the results in

Gu et al. (2018) on the RNN architecture. We con-

jecture that it is because Adaptive Retrieval only

partially maximize the word coverage while ne-

glecting the overall semantics of the whole sen-

tence thus injecting undesirable noise into the re-

trieval phase. In contrast, the proposed CMM takes

both token-level coverage and sentence-level sim-

ilarity into consideration and consistently outper-

forms T-Ada, gaining about 0.5-1.4 BLEU points

on four tasks in translation quality with smaller

TM size and lower latency in both training and

inference phase. This fact shows the following

findings: 1) NMT augmented with diverse trans-

lation memory can yield consistent improvements

in translation quality; 2) how to model and learn

the diverse translation memory is important in addi-

https://github.com/Hannibal046/NMT_with_contrastive_memories
https://github.com/Hannibal046/NMT_with_contrastive_memories


System
Es→En En→Es De→En En→De

Dev Test Dev Test Dev Test Dev Test

Vaswani et al., 2017† 64.08 64.63 62.02 61.80 60.18 60.16 54.65 55.07

Gu et al., 2018 57.62 57.27 60.28 59.34 55.63 55.33 49.26 48.80

Zhang et al., 2018 63.97 64.30 61.50 61.56 60.10 60.26 55.54 55.14

Xu et al., 2020* 66.44 65.90 - - - - - -

Xia et al., 2019 66.37 66.21 62.50 62.76 61.85 61.72 57.43 56.88

He et al., 2021(@s) 67.23 67.26 - - - - - -

Cai et al., 2021(#2) 66.98 66.48 63.04 62.76 63.62 63.85 57.88 57.53

CMM 67.48 67.76 63.84 64.04 64.22 64.33 58.94 58.69

Table 2: BLEU points on four translation directions of JRC-Acquis dataset. † denotes that the model is imple-

mented by ourselves. @s means the model is trained under standard training criterion and * means results are from

He et al. (2021). #2 is the second model proposed in Cai et al. (2021) using source retrieval.

System Model Size Training Inference
Es→En En→Es De→En En→De

Dev Test Dev Test Dev Test Dev Test

T-Para 101M 2.76x 1.36x 67.73 67.42 64.18 63.86 64.48 64.62 58.77 58.42

CMM 68M 1.21x 1.44x 67.48 67.76 63.84 64.04 64.22 64.33 58.94 58.69

Table 3: Translation quality and running efficiency compared with the strong model T-Para.

BLEU Chrf TER BertScore BartScore

BaseGreedy 66.84 78.45 25.39 0.9686 0.1209

CMM 67.76 79.01 24.43 0.9698 0.1329

Table 4: Evaluation results with different metrics.

tion to promoting diversity in translation memory.

Because of the potential problem of high BLEU

test (Callison-Burch et al., 2006), we conduct an-

other two experiments. First, We use metrics other

than BLEU to evaluate our high BLEU systems.

We compare our model CMM and BaseGreedy in

JRC/EsEn dataset. We use both model-free and

model-based metrics as shown in Table 4. A clear

patent here is that our higher-BLEU model CMM

outperforms BaseGreedy model in all these met-

rics. Second, we disengage our model from high

BLEU range by picking the hard sentences from

the test set of JRC/EsEn according to the sentence-

level BLEU for a vanilla Transformer model. The

evaluation results for top-25%, top-50%, top-75%

hardest subsets are shown in Table 5. We can see

that the proposed CMM still outperforms baselines

on the top-25% subset whose BLEU is in the range

of 30s.

Comparing with other baselines Since our

CMM involves the heuristic metric (i.e., TF-IDF

and normalized edit distance) for retrieval, we first

compare our methods with other works using the

top-25% top-50% top-75% ALL

Vaswani et al. (2017) 29.17 43.48 56.07 64.63

BaseGreedy 34.17 48.77 59.94 66.84

CMM 35.38 49.37 60.53 67.76

Table 5: Evaluation results in terms of BLEU in differ-

ent difficulty range.

same retrieval metric. The result is presented in

Table 2. As can be seen, our method yields con-

sistent better results than all other baseline mod-

els across four tasks in terms of BLEU. Substan-

tial improvement by an average 3.31 BLEU points

and up to 4.29 in En→De direction compared with

transformer baseline model demonstrates the effec-

tiveness of incorporating translation memories into

NMT model. In comparison with previous works

either using greedy retrieval (Gu et al., 2018; Zhang

et al., 2018; Xia et al., 2019; Cai et al., 2021), which

introduces redundant and uninformative translation

memories, or using top1 similar translation mem-

ory (Xu et al., 2020; He et al., 2021), which causes

omission of potentially useful cues, our framework

equipped with contrastive translation memories can

deliver consistent improvement in both develop-

ment set and test set among four translation direc-

tions.

Unlike the above work, there is also another

line of work that retrieve translation memory with

a learnable metric. Cai et al. (2021) proposes a



En-De En-Es
→ ← → ←

D
ev

T w/o MTCL 58.55 64.14 63.26 67.30
T w/o HGA 58.06 63.85 62.74 67.28
T-Greedy 58.01 63.72 63.10 66.98
T-MMR 58.20 64.10 62.66 67.25
CMM 58.94 64.22 63.84 67.48

T
es

t

T w/o MTCL 58.37 64.29 63.92 67.49
T w/o HGA 58.06 64.19 62.74 67.28
T-Greedy 57.66 63.57 63.28 67.16
T-MMR 57.95 64.27 63.10 67.15
CMM 58.69 64.33 64.04 67.76

Table 6: Ablation study in four translation tasks with

respect to each key component in our framework.

powerful framework (namely T-Para) which jointly

trains the retrieval metric and translation model in

an end-to-end fashion, leading to state-of-the-art

performance in translation quality. We also com-

pare our method with this strong model and result

is shown in Table 3. Notice that our model gives

comparable results with T-Para, which is actually

remarkable considering that our model has much

smaller model size and training latency. In particu-

lar, our work about contrastive translation memory

is orthogonal to Cai et al. (2021) and it is promis-

ing to apply our idea into their framework, which

remains a future work.

5.2 Analysis

Ablation Study We also implement several

variants of our framework: (1) T w/o MTCL: this

model uses the same model configuration as CMM

but without MTCL loss. (2) T w/o HGA: in this

setting, |M | translation memories are concatenated

together as a long sequence without Hierarchical

Group Attention module. (3) T-Greedy: this model

replaces the Contrastive Retrieval in CMM by

Greedy Retrieval. (4) T-MMR: this model replaces

the Contrastive Retrieval in CMM by Maximal

Marginal Relevance (Carbonell and Goldstein,

1998) while the setting of translation model keeps

the same as CMM. The result is shown in Table 6

and we have the following observations. Simply re-

placing Contrastive Retrieval by Greedy Retrieval

or MMR while keeping the setting of translation

model unchanged yields worse results than our

model which demonstrates that the informative

translation memories serve as key ingredient in a

TM-augmented NMT model. Interestingly, direct

removal of HGA module while maintaining MTCL

objective (i.e., T w/o HGA) gives consistent worse
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Figure 3: Effect of contrastive factor and TM size.
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Figure 4: Visualization of Translation Memories and

Target sentence in EnEs and EnDe testset by t-SNE.

results in four translation directions. We suspect

that a pull-and-push game brought by contrastive

learning causes performance degradation without

modeling the fine-grained interaction among

multiple translation memories. Combining HGA

and MTCL, which facilitates communication

between different translation memories and helps

the model to learn the subtle difference between

them, performs better than all other baseline

models revealing the fact that properly designed

contrastive learning objective and HGA module is

complementary to each other.

Memory Size and Contrastive Factor To ver-

ify the effectiveness of fusing multiple contrastive

translation memories, we choose En→De dataset

and make the following experiments in both TM

retrieval and TM fusion stage: In retrieval stage, we

explore the contrastive factor α which is supposed

to decide the degree of currently retrieved transla-

tion memory contrasting to those already retrieved.

A larger α indicates that the retrieved translation

memories are less similar to the source sentence

while more contrastive to each other. And in fusion

stage, the size |M | of translation memories is con-

sidered. The effect of different α is shown in Figure

3. The random point is the result of a NMT model

with |M | randomly retrieved translation memories

and it even underperforms a non-TM translation

model (Vaswani et al., 2017) shown in Table 2. We



assume it is due to much noise injected by random

memories. When contrastive factor α is set to 0, it

is essentially greedy retrieval, and an important ob-

servation is that the translation quality of our model

increases with the α until it drops at some certain

point. We suspect that too large α would yield mu-

tually contrastive TM that divert too much from the

original source sentence. Similar phenomenon can

be verified in the Figure 3, when TM size equals to

0, it is a non-TM translation model delivering worst

result while too large TM size also hurts the model

performance which is also observed in Bulté and

Tezcan (2019); Xia et al. (2019).

To further demonstrate the intuition behind our

framework, we randomly sample 1,000 examples

from test sets of En→De and En→Es directions

and use t-SNE (Van der Maaten and Hinton, 2008)

to visualize the sentence embedding of translation

memories and target sentence encoded by our

CMM. The result is shown in Figure 4 and one

interesting observation is that although the target

side of testset is never exposed to the model,

the representation of translation memories are

uniformly distributed around the target sentence in

the latent semantic space.

6 Conclusion

In this work, we introduce an approach to incorpo-

rate contrastive translation memories into a NMT

system. Our system demonstrates its superiority in

retrieval, memory encoding and training phases.

Experimental results on four translation datasets

verify the effectiveness of our framework. In the fu-

ture, we plan to exploit the potential of this general

idea in different retrieval-generation tasks.

7 Limitations

This paper propose a framework for Retrieval-

augmented Neural Machine Translation and it re-

lies on holistically similar but mutually contrastive

translation memories which makes it work mostly

for corpora in the same domain. How to apply this

general idea to other scenario like low resource

NMT remains a future challenge.
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