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ABSTRACT

In recent years, machine translation software has increasingly been
integrated into our daily lives. People routinely use machine trans-
lation for various applications, such as describing symptoms to a
foreign doctor and reading political news in a foreign language.
However, the complexity and intractability of neural machine trans-
lation (NMT) models that power modern machine translation make
the robustness of these systems difficult to even assess, much less
guarantee. Machine translation systems can return inferior results
that lead to misunderstanding, medical misdiagnoses, threats to
personal safety, or political conflicts. Despite its apparent impor-
tance, validating the robustness of machine translation systems is
very difficult and has, therefore, been much under-explored.

To tackle this challenge, we introduce structure-invariant testing
(SIT), a novel metamorphic testing approach for validating machine
translation software. Our key insight is that the translation results of
“similar” source sentences should typically exhibit similar sentence
structures. Specifically, SIT (1) generates similar source sentences by
substituting one word in a given sentence with semantically similar,
syntactically equivalent words; (2) represents sentence structure
by syntax parse trees (obtained via constituency or dependency
parsing); (3) reports sentence pairs whose structures differ quanti-
tatively by more than some threshold. To evaluate SIT, we use it
to test Google Translate and Bing Microsoft Translator with 200
source sentences as input, which led to 64 and 70 buggy issues with
69.5% and 70% top-1 accuracy, respectively. The translation errors
are diverse, including under-translation, over-translation, incorrect
modification, word/phrase mistranslation, and unclear logic.
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1 INTRODUCTION

Machine translation software has seen rapid growth in the last
decade; users now rely on machine translation for a variety of ap-
plications, such as signing lease agreements when studying abroad,
describing symptoms to a foreign doctor, and reading political news
in a foreign language. In 2016, Google Translate, the most widely-
used online translation service, attracted more than 500 million
users and translated more than 100 billion words per day [81]. On
top of this, machine translation services are also embedded into var-
ious software applications, such as Facebook [25] and Twitter [82].

The advances in machine translation that are responsible for
such growth can largely be attributed to neural machine transla-
tion (NMT) models, which have become the core component of
many machine translation systems. As reported by research from
Google [86] and Microsoft [32], state-of-the-art NMT models are
approaching human-level performance in terms of accuracy, i.e.,

BLEU [67]. These recent breakthroughs have led users to start re-
lying on machine translation software (e.g., Google Translate [30]
and Bing Microsoft Translator [5]) in their daily lives.

However, NMT models are not as reliable as many may believe.
Recently, sub-optimal and incorrect outputs have been found in
various software systems with neural networks as their core com-
ponents. Typical examples include autonomous cars [23, 68, 79],
sentiment analysis tools [2, 36, 46], and speech recognition ser-
vices [6, 71]. These recent research efforts show that neural net-
works can easily return inferior results (e.g., wrong class labels)
given specially-crafted inputs (i.e., adversarial examples). NMT mod-
els are no exception; they can be fooled by adversarial examples [22]
or natural noise (e.g., typos in input sentences) [4]. These inferior
results (i.e., sub-optimal or incorrect translations), can lead to misun-
derstanding, embarrassment, financial loss, medical misdiagnoses,
threats to personal safety, or political conflicts [17, 57, 64, 65, 80].
Thus, assuring the robustness of machine translation software is
an important endeavor.

Yet testing machine translation software is extremely challeng-
ing. First, different from traditional software whose logic is encoded
in source code, machine translation software is based on complex
neural networks with millions of parameters. Therefore, testing
techniques for traditional software, which are mostly code-based,
are ineffective. Second, the line of recent research on testing artifi-
cial intelligence (Al) software [2, 29, 36, 37, 46, 62, 68] focuses on
tasks with much simpler output formats—for example, testing im-
age classifiers, which output class labels given an image. However,
as one of the most difficult natural language processing (NLP) tasks,
the output of machine translation systems (i.e., translated sentences)
is significantly more complex. Because they are not structured to
handle such complex outputs, when applied to NMT models, typical
Al testing approaches almost solely find "illegal” inputs, such as sen-
tences with syntax errors or obvious misspellings that are unlikely
given as input. Yet these errors are not the problematic ones in prac-
tice; as reported by WeChat, a messenger app with over one billion
monthly active users, its embedded NMT model can return inferior
results even when the input sentences are syntactically correct [96].
Due to the difficulty of building an effective, automated approach
to evaluate the correctness of translation, current approaches for
testing machine translation software have many shortcomings.

Approaches that try to address these aforementioned problems
still have their own deficiencies—namely, the inability to detect
grammatical errors and the lack of real-world test cases. Current
testing procedures for machine translation software typically in-
volve three steps [96]: (1) collecting bilingual sentence pairs! and

1By a sentence pair, we refer to a source sentence and its corresponding target sentence.
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Source sentence

Google Translate result

Target sentence meaning

I live on campus with smart people.

I live on campus with cute people.

Ilive on campus with tall people.

FRAE ] g A AR Al B
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I live on campus with smart people. /
I live on campus with cute people.
[ live on campus, [ am tall. )(

U=

Figure 1: Examples of similar source sentences and Google Translate results.

splitting them into training, validation, and testing data; (2) calcu-
lating translation quality scores (e.g., BLEU [67] and ROUGE [48])
of the trained NMT model on the testing data; and (3) comparing
the scores with predefined thresholds to determine whether the
test cases pass. However, testing based on a threshold score like
BLEU, which is a measurement of the overlap between n-grams
of the target and reference, can easily overlook grammatical er-
rors. Additionally, the calculation of translation quality scores (e.g.,
BLEU) requires bilingual sentence pairs as input, which need to
be manually constructed beforehand. To test with real-world user
input outside of the training set, extensive manual effort is needed
for ground-truth translations. Thus, an effective and efficient test-
ing methodology that can automatically detect errors? in machine
translation software is in high demand.

To address the above problems, we introduce structure-invariant
testing (SIT), a novel, widely-applicable methodology for validating
machine translation software. The key insight is that similar source
sentences—e.g. sentences that differ by a single word—typically
have translation results of similar sentence structures. For example,
Fig. 1 shows three similar source sentences in English and their
target sentences in Chinese. The first two translations are correct,
while the third is not. We can observe that the structure of the third
sentence in Chinese significantly differs from those of the other
two. For each source sentence, SIT (1) generates a list of its similar
sentences by modifying a single word in the source sentence via
NLP techniques (i.e., BERT [19]); (2) feeds all the sentences to the
software under test to obtain their translations; (3) uses specialized
data structures (i.e., constituency parse tree and dependency parse
tree) to represent the syntax structure of each of the translated sen-
tences; and (4) compares the structures of the translated sentences.
If a large difference exists between the structures of the translated
original and any of the translated modified sentences, we report
the modified sentence pair along with the original sentence pair as
potential errors.

We apply SIT to test Google Translate and Bing Microsoft Trans-
lator with 200 source sentences crawled from the Web as input.
SIT successfully found 64 buggy issues (defined in Section 3) in
Google Translate and 70 buggy issues in Bing Microsoft Translator
with high accuracy (i.e., 69.5% and 70% top-1 accuracy respectively).
The reported errors® are diverse, including under-translation, over-
translation, incorrect modification, word/phrase mistranslation,
and unclear logic, none of which could be detected by the widely-
used metrics BLEU and ROUGE. Examples of different translation
errors are illustrated in Fig. 2. The source code and datasets are

2By a translation error, we refer to mistranslation of some parts of a source sentence.
The translated sentence (i.e., target sentence) containing translation error(s) is regarded
as a buggy sentence. We use "error in the target sentence" and "error in the sentence
pair” interchangeably in this paper.
3https://github.com/PinjiaHe/Structurelnvariant Testing

also released for reuse. Note that our results were w.r.t. the snap-
shots of Google Translate and Bing Microsoft Translator when we
performed our testing. After releasing our results dataset in July
2019, we notice that some of the reported translation errors have
recently been addressed.

This paper makes the following main contributions:

o Itintroduces structure-invariant testing (SIT), a novel, widely
applicable methodology for validating machine translation
software;

o It describes a practical implementation of SIT by adapting
BERT [19] to generate similar sentences and leveraging syn-
tax parsers to represent sentence structures;

o It presents the evaluation of SIT using only 200 source sen-
tences crawled from the Web to successfully find 64 buggy
issues in Google Translate and 70 buggy issues in Bing Mi-
crosoft Translator with high accuracy; and

o It discusses the diverse error categories found by SIT, of
which none could be found by state-of-the-art metrics.

2 A REAL-WORLD EXAMPLE

Tom planned to take his son David, who is 14 years old, to the
Zurich Zoo. Before their zoo visit, he checked the zoo’s website?
about purchasing tickets and saw the following German sentence:

Kinder bis 15 Jahre erhalten an ihrem Geburtstag gegen Vorweisen
eines gultigen Ausweises den Zooeintritt geschenkt.

Tom is from the United States, and he does not understand Ger-
man. To figure out its meaning, Tom used Google Translate, a
popular translation service powered by NMT models [86]. Google
Translate returned the following English sentence:

Children up to the age of 15 are given free admission to the zoo
on presentation of a valid ID.

However, David was denied free entry by the zoo staff even with
a valid ID. They found out that they had misunderstood the zoo’s
regulation because of the incorrect translation returned by Google
Translate. The correct translation should be:

Children up to the age of 15 are given free admission to the
zoo on their birthday on presentation of a valid ID.

This is a real translation error that led to a confusing, unpleasant
experience. Translation errors could also cause extremely serious
consequences [17, 57, 65, 80]. For example, a Palestinian man was
arrested by Israeli police for a post saying "good morning," which
Facebook’s machine translation service erroneously translated as

*https://www.zoo.ch/de/zoobesuch/tickets-preise
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Error type Source sentence

Target sentence

Target sentence meaning

It is believed in the field that
Amazon employs more PhD
economists than any other tech
company.

Under-translation

W B - 23 %Kk Amazon employs more PhD
HAATATRR A S 2,
(by Google)

economists than any other tech
company.

Entering talks, Brazil hoped to see
itself elevated to major non NATO
Over-translation | ally status by the Trump

help it purchase military equipment.

HNRHA, BEAFEEHED
BRFE A BURFR T 32 29k
L2 B EHAT, X — AN
administration, a big step that would I SEZE S &y — IO,

(by Bing)

Entering talks, Brazil hoped to see
itself elevated to major non NATO
ally status by the Trump
administration, one a big step that
would help it purchase military

equipment.
Incorrect But even so, they remain prisoners  {RAREANL, MAIHZKZENSL  But even so, they remain
modification of privilege. AL (by Google) prisoners' priviliege.
Word/phrase I am very willing to share my point  FeIEH R FE FRATIS, | am very wiling to agree with my
mistranslation of view. (by Bing) point of view.
| had a joke to tell and | wanted to  FEFEFIUL, FITTLEU, T | joked that | want to finish it

Unclear logic finish it, Draper says.

SERE, (by Google)

Draper says.

Figure 2: Examples of translation errors (English-to-Chinese) detected by SIT.

Source sentence
I live on campus with smart people.
(1) Generate similar sentences

Similar sentences

Target sentences
(in Chinese)

BMEEWAEEREE,

(in English)

I live on campus with smart people.

@ Ilive on campus with tall people. (2) Collect target sentences

Q@ HAMAZMAEFEREE,

Q BEEREER, SME K,
@ | live on campus with cute people.

Structure representations Translation errors

A

Original sentence and translation:
| live on campus with smart people.

FMETIANEERRE,

@ @
Modified sentence and translation:
@ Ilive on campus with tall people.

BREEREER, s

(3) Representation of
the target sentences

(4) Translation error detection

Figure 3: Overview of SIT.

"attack them" in Hebrew and "hurt them" in English [17, 65]. This
demonstrates both the widespread reliance on machine transla-
tion software and the potential negative effects when it fails. To
enhance the reliability of machine translation software, this paper
introduces a general validation approach called structure-invariant
testing, which automatically and accurately detects translation er-
rors without oracles.

3 APPROACH AND IMPLEMENTATION

This section introduces structure-invariant testing (SIT) and de-
scribes our implementation. The input of SIT is a list of unlabeled,
monolingual sentences, while its output is a list of suspicious issues.
For each original sentence, SIT reports either 0 (i.e., no buggy sen-
tence is found) or 1 issue (i.e., at least 1 buggy sentence is found).
Each issue contains: (1) the original source sentence and its transla-
tion; and (2) top-k farthest® generated source sentences and their
translations. The original sentence pair is reported for the following
reasons: (1) seeing how the original sentence was modified may

Sthe distance metric here is between the structures of the original sentence translation
and the modified sentence translations

help the user understand why the translation system made a mis-
take; (2) the error may actually lie in the translation of the original
sentence.

Fig. 3 illustrates the overview of SIT. In this figure, we use one
source sentence as input for simplicity and clarity. The key insight
of SIT is that similar source sentences often have target sentences
of similar syntactic structure. Derived from this insight, SIT carries
out the following four steps:

(1) Generating similar sentences. For each source sentence, we
generate a list of its similar sentences by modifying a single
word in the sentence.

(2) Collecting target sentences. We feed the original and the gen-
erated similar sentences to the machine translation system
under test and collect their target sentences.

(3) Representing target sentence structures. All the target sen-
tences are encoded as data structures specialized for natural
language processing.

(4) Detecting translation errors. The structures of the translated
modified sentences are compared to the structure of the
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Figure 4: Similar sentence generation process.

translated original sentence. If there is a large difference
between the structures, SIT reports a potential error.

3.1 Generating Similar Sentences

In order to test for structural invariance, we must compare two sen-
tences that have the same syntactic structure but differ in at least
one token. We have found that, given an input sentence, chang-
ing one word in the sentence at a time under certain constraints
effectively produces a set of structurally identical and semantically
similar sentences.

Explicitly, the approach we take modifies a single token in an
input sentence, replacing it with another token of the same part
of speech (POS),® to produce an alternate sentence. For example,
we will mask "hairy" in the source sentence in Fig. 4 and replace
it with the top-k most similar tokens to generate k similar sen-
tences. We do this for every candidate token in the sentence; for the
sake of simplicity and to avoid grammatically strange or incorrect
sentences, we only use nouns and adjectives as candidate tokens.

Now we discuss the problem of selecting replacement tokens.
Perhaps the simplest algorithm for selecting a set of replacement to-
kens would involve using word embeddings [60]. One could choose
words that have high vector similarity with and identical POS tags
to a given token in the original sentence as replacements in the
modified sentences. However, since word embeddings have the
same value regardless of context, this approach often produces sen-
tences that would not occur in common language. For example, the
word "fork" might have high vector similarity with and the same
POS tag as the word "plate" However, while the sentence "He came
to a fork in the road" makes sense, the sentence "He came to a plate
in the road" does not.

Rather, we want a model that considers the surrounding words
and comes up with a set of replacements that, when inserted, create
realistic sentences. A model that does just this is the masked lan-
guage model (MLM) [59], inspired by the Cloze task [78]. The input
to an MLM is a piece of text with a single token masked (i.e., deleted
from the sentence and replaced with a special indicator token). The
job of the model is then to predict the token in that position given
the context. This method forces the model to learn the dependen-
cies between different tokens. Since there are a number of different
contexts a single word can fit in, this model, in a sense, allows for a
single token to have multiple representations. We therefore get a
set of replacement tokens that are context dependent. While the
predicted tokens are not guaranteed to have the same meaning as
the original token, if the MLM is well trained, it is highly likely that

Shttps://en.wikipedia.org/wiki/Part_of_speech
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the sentence with the new, predicted token is both syntactically
correct and meaningful.

An example of the sentence generation process is demonstrated
in Fig. 4. For our implementation, we use BERT [19], which is a state-
of-the-art language representation model recently proposed by
Google. The out-of-box BERT model provides pre-trained language
representations that can be fine-tuned by adding an additional
lightweight softmax classification layer to create models for a wide
range of language-related tasks, such as masked language modelling.
BERT was trained on a huge amount of data—a concatenation of
BooksCorpus (800M words) and English Wikipedia (2,500M words)—
with the masked language task being one of two main tasks used for
training. Thus, we believe that BERT fits this aspect of our approach
well.

3.2 Collecting Target Sentences

Once we have generated a list of similar sentences from our original
sentence, the next step is to input all the source sentences to the ma-
chine translation software under test and collect the corresponding
translation results (i.e., target sentences). We subsequently analyze
the results to find errors. We use Google’s and Bing’s machine
translation systems as test systems for our experiment. To obtain
translation results, we invoke the APIs provided by Google Trans-
late and Bing Microsoft Translator, which return identical results
as their Web interfaces [5, 30].

3.3 Representations of the Target Sentences

Next we must model the target sentences obtained from the trans-
lation system under test as this allows us to compare structures
to detect errors. Choosing the structure with which to represent
our sentences will affect our ability to perform meaningful compar-
isons. We ultimately want a representation that precisely models
the structure of a sentence while offering fast comparison between
two values.

The simplest and fastest approach is to compare sentences in
their raw form: as strings. Indeed, we test this method and perfor-
mance is reasonable. However, there are many scenarios in which
this method falls short. For example, the prepositional phrase "on
Friday" in the sentence "On Friday, we went to the movies" can also
be placed on the end of the sentence as follows: "We went to the
movies on Friday" The sentences are interchangeable but a metric
such as character edit distance would indicate a large difference
between the strings. Syntax parsing overcomes the above issue.
With a syntax parser, we can model the syntactic structure of a
string and the relationship between words or groups of words. For
example, if parsing is done correctly, our two sample sentences
above should have identical representations in terms of relation
values and parse structure.

3.3.1 Raw Target Sentence. For this method, we leave our target
sentence in its original format, i.e., as a string. In most cases, we
may expect that editing a single token in a sentence in one lan-
guage would lead to the change of a single token in the translated
sentence. Given the syntactic role of the replacement token is the
same, this would ideally happen in all machine translation sys-
tems. However, this is not always the case in practice as prepo-
sitional phrases, modifiers, and other constituents can often be
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Raw Sentence

Our team is finding errors in machine translation systems

Constituency Structure

/\
NG N

PRP$ NN VBZ VP—> NP

\P‘P—PNP
/// NNS Nﬁ ms
T T

Our team is finding errors machine translation systems

non-terminal: relations
terminal: words

Dependency Structure

Relations Details
finding nmod:poss (team, Our)
/ l \ nsubj (finding, team)

aux (finding, is)
root (ROOT, finding)
l i dobj (finding, errors)
our systems case (systems, in)
compound (systems, machine)
i \ compound (systems, translation)

in  machine translation nmod (errors, systems)

team errors

Figure 5: Representing sentence structures; both depen-
dency & constituency relations can be displayed as trees.

placed in different locations by the translation system and pro-
duce a semantically-equivalent, grammatically correct sentence.
Nonetheless, this method serves as a good baseline.

3.3.2  Constituency Parse Tree. Constituency parsing is one method
for deriving the syntactic structure of a string. It generates a set
of constituency relations, which show how a word or group of
words form different units within a sentence. This set of relations is
particularly useful for SIT because it will reflect changes to the type
of phrases in a sentence. For example, while a prepositional phrase
can be placed in multiple locations to produce a sentence with
the same meaning, the set of constituency relations will remain
unchanged. Constituency relations can be visualized as a tree, as
shown in Fig. 5. A constituency parse tree is an ordered, rooted
tree where non-terminal nodes are the constituent relations and
terminal nodes are the words. Formally, in constituency parsing,
a sentence is broken down into its constituent parts according
to the phrase structure rules [14] outlined by a given context-free
grammar. For our experiments, we use the shift-reduce constituency
parser by Zhu et al. [99] and implemented in Stanford’s CoreNLP
library [31]. It can parse about 50 sentences per second.

3.3.3 Dependency Parse Tree. Dependency parsing likewise de-
rives the syntactic structure of a string. However, the set of relations
produced describe the direct relationships between words rather
than how words constitute a sentence. This set of relations gives
us different insights about structure and is intuitively useful for
SIT because it will reflect changes between how words interact.
Much progress has been made over the past 15 years on dependency
parsing. Speed and accuracy increased dramatically with the intro-
duction of neural network based parsers [11]. As with shift-reduce
constituency parsers, neural network based dependency parsers use
a stack-like system where transitions are chosen using a classifier.

The classifier in this case is a neural network, likewise trained on
annotated tree banks. For our implementation, we use the most
recent neural network based parsers made available by Stanford
CoreNLP, which can parse about 100 sentences per second. We use
the Universal Dependencies as our annotation scheme, which has
evolved based off the Stanford Dependencies [18].

3.4 Translation Error Detection via Structure
Comparison

Finally, in order to find translation errors, we search for structural
variation by comparing sentence representations. Whether sen-
tences are modelled as raw strings, word embeddings, or parse
trees, there are a number of different metrics for calculating the
distance between two values. These metrics tend to be quite domain
specific and might have low correlation with each other, making the
choice of metric incredibly important. For example, a metric such as
Word Mover’s Distance [41] would give us a distance of 0 between
the two sentences "He went to the store" and "Store he the went to"
while character edit distance would give a distance of 14. We ex-
plore several different metrics for evaluating the distance between
sentences: character (Levenshtein) edit distance, constituency set
difference, and dependency set difference.

3.4.1 Levenshtein Distance between Raw Sentences. The Leven-
shtein distance [44], sometimes more generally referred to as the
"edit distance,’ compares two strings and determines how closely
they match each other by calculating the minimum number of
character edits (deletions, insertions, and substitutions) needed to
transform one string into the other. While the method may not
demonstrate syntactic similarity between sentences well, it exploits
the expectation that editing a single token in a sentence in one
language will often lead to the change of only a single token in the
translated sentence. Therefore, the Levenshtein distance serves as
a good baseline metric.

3.4.2 Relation Distance between Constituency Parse Trees. To eval-
uate the distance between two sets of constituency relations, we
calculate the distance between two lists of constituency grammars
as the sum of absolute difference in the count of each phrasal type,
which gives us a basic understanding of how a sentence has changed
after modification. The motivation behind this heuristic is that the
constituents of a sentence should stay the same between two sen-
tences where only a single token of the same part of speech differs.
In a robust machine translation system, this should be reflected in
the target sentences as well.

3.4.3 Relation Distance between Dependency Parse Trees. Similarly,
for calculating the distance between two lists of dependencies, we
sum the absolute difference in the number of each type of depen-
dency relations. Again, the motivation is that the relationships
between words will ideally remain unchanged when a single token
is replaced. Therefore, a change in the set is reasonable indication
that structural invariance has been violated and presumably there
is a translation error.

3.4.4 Distance Thresholding. Using one of the above metrics, we
calculate the distance between the original target sentence and
the generated target sentences. We must then decide whether a



modified target sentence is far enough from the its corresponding
original target sentence to indicate the presence of a translation
error. To do this, we first filter based on a distance threshold, only
keeping sentences that are farther from the original sentence than
the chosen threshold. Then, for a given original target sentence,
we report the top-k (k also being a chosen parameter) farthest
modified target sentences. We leave the distance threshold as a
manual parameter since the user may prioritize minimizing false
positive reports or minimizing false negative reports depending on
their goal. In Section 4.6, we show tradeoffs for different threshold
values. For each original sentence, an issue will be reported if at
least one translated generated sentence is considered buggy.

4 EVALUATION

In this section, we evaluate our approach by applying it to Google
Translate and Bing Microsoft Translator with real-world unlabeled
sentences crawled from the Web. Our main research questions are:

e RQ1: How effective is the approach at finding buggy transla-
tions in machine translation software?

e RQ2: What kinds of translation errors can our approach find?

e RQ3: How efficient is the approach?

e RQ4: How do we select the distance threshold in practice?

4.1 Experimental Setup

To verify the results of SIT, we manually inspect each issue reported
and collectively decide: (1) whether the issue contains buggy sen-
tences; and (2) if yes, what kind of translation errors it contains.
All experiments are run on a Linux workstation with 6 Core Intel
Core i7-8700 3.2GHz Processor, 16GB DDR4 2666MHz Memory, and
GeForce GTX 1070 GPU. The Linux workstation is running 64-bit
Ubuntu 18.04.02 with Linux kernel 4.25.0.

4.2 Dataset

Typically, to test a machine translation system, developers can
adopt SIT with any source sentence as input. Thus, to evaluate the
effectiveness of our approach, we collect real-world source sen-
tences from the Web. Specifically, input sentences are extracted
from CNN7 (Cable News Network) articles in two categories: poli-
tics and business. The datasets are collected from two categories
of articles because we intend to evaluate whether SIT consistently
performs well on sentences of different semantic context.

For each category, we crawled the 10 latest articles, extracted
their main text contents, and split them into a list of sentences.
Then, we randomly select 100 sentences from each sentence list as
the experimental datasets (200 in total). In this process, sentences
that contain more than 35 words are filtered because we intend to
demonstrate that machine translation software can return inferior
results even for relatively short, simple sentences. The details of
the collected datasets are illustrated in Table 1.

4.3 The Effectiveness of SIT

Our approach aims to automatically find translation errors using
unlabeled sentences and report them to developers. Thus, the ef-
fectiveness of the approach lies in two aspects: (1) how accurate

"https://edition.cnn.com/
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Table 1: Statistics of input sentences for evaluation. Each cor-
pus contains 100 sentences.

# of Words/ Average # of # of Words
Corpus Sentence Words/Sentence Total Distinct
Politics 4~32 19.2 1,918 933
Business 4~33 19.5 1,949 944

Table 2: Top-k accuracy of SIT.

Top-1 Top-2 Top-3
(#buggy issues)
55.0% (55)
SIT (Constituency) 61.3% (62) 66.3% (67) 68.3% (69)
SIT (Dependency) 69.5% (64) 71.7% (66) 73.9% (68)
Bing Microsoft Top-1 Top-2 Top-3

Google Translate )
(#buggy issues)

63.0% (63)

(#buggy issues)
66.0% (66)

SIT (Raw)

Translator (#buggy issues)  (#buggy issues)  (#buggy issues)

SIT (Raw) 58.8% (60) 69.6% (71) 71.5% (73)
SIT (Constituency) 67.0% (67) 71.0% (71) 74.0% (74)
SIT (Dependency) 70.0% (70) 71.0% (71) 78.0% (78)

are the reported results; and (2) how many buggy sentences can
SIT find? In this section, we evaluate both aspects by applying SIT
to test Google Translate and Bing Microsoft Translator using the
datasets illustrated in Table 1.

4.3.1 Evaluation Metric. The output of SIT is a list of issues, each
containing (1) an original source sentence and its translation; (2)
the top-k reported generated sentences and their translations (i.e.
the k farthest translations from the source sentence translation).
Here we define top-k accuracy as the percentage of reported issues
where at least one of the top-k reported sentences or the original
sentence contains an error. We use this as our accuracy metric for
SIT. Explicitly, if there is a buggy sentence in the top-k generated
sentences of issue i, we consider the issue to be accurate and set
buggy(i, k) to true; else we set buggy(i, k) to false. If the original
sentence is buggy and was reported as an issue, then we also set
buggy(i, k) to true. Given a list of issues I, its top-k accuracy is
calculated as:

o1 1
Accuracy,, = el {b|1[4|99y(z,k)}, (1)

where |I| is the number of the issues returned by SIT.

4.3.2  Results. Top-k accuracy. The results are summarized in Ta-
ble 2. SIT (Raw), SIT (Constituency), and SIT (Dependency) are SIT
implementations with raw sentence, constituency structure, and
dependency structure as sentence structure representation, respec-
tively. Each item in the table presents the top-k accuracy along with
the number of buggy issues found. In subsequent discussions, for
brevity, we refer SIT (Constituency) and SIT (Dependency) as SIT
(Con) and SIT (Dep), respectively.

We observe that SIT (Con) and SIT (Dep) consistently perform
better than SIT (Raw), which demonstrates the importance of the
structure representation of sentences. The metric used in SIT (Raw),
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Table 3: Number of unique errors. Top-k unique errors by
SIT are errors only in generated sentences output by SIT

(Dep).

Original #Top-1 unique #Top-2 unique #Top-3 unique

sentences  errors by SIT  errors by SIT  errors by SIT
Google 55 45 64 79
Bing 60 32 43 66

Table 4: Number of sentences that have specific errors in
each category SIT (Dep).

Google \ Bing Unde'r Over. Incp'rreq V\{ord/phra.se Unclgar
translation translation modification mistranslation logic

Top-1 35\17 9\8 4\2 44\54 27\31
Top-2 48\23 12\15 6\3 59\ 60 44\ 41
Top-3 61\35 15\21 10\4 75\93 53\59

which is based only on the characters in the sentences, is brittle
and subject to over and under report errors. For example, SIT (raw)
may report sentences that are different in word level but similar
in sentence structure, leading to false positives. SIT (Con) and SIT
(Dep) achieve comparable performance in terms of both top-k accu-
racy and the number of reported buggy issues. In particular, when
testing Bing Microsoft Translator, SIT (Dep) reports 100 suspicious
issues. Among these issues, 70 of them contain translation errors
in the first reported sentence or the original sentence, achieving
70% top-1 accuracy. SIT (Dep) has the best performance on Top-1
accuracy for both Google Translate and Bing Microsoft Translator.
It successfully finds 64 and 70 buggy issues with 69.5% and 71% top-
1 accuracy, respectively. SIT (Dep) also achieves the highest top-3
accuracy (73.9% and 78%). Note that source sentences in the same
issue only differ by one word. Thus, inspecting top-3 sentences will
not cause more effort compared with inspecting top-1 sentences.

In addition, we study whether SIT can trigger new errors in
the generated sentences. As illustrated in Table 3, in the reported
issues, 55 and 60 unique errors are found in the translation of origi-
nal sentences by Google Translate and Bing Microsoft Translator
respectively. Besides these errors, SIT finds 79 and 66 extra unique
errors that are revealed only in the generated sentence pairs but
not in the original. Thus, given its high top-k accuracy and lots
of extra unique errors reported, we believe SIT is very useful in
practice.

We did not compared SIT’s accuracy with [96] and [97] because
of the following reasons. SIT targets general mistranslation errors,
while [96] focuses on under-/over-translations. Thus, we did not
empirically compare with it. In terms of error type and quantity,
[96] can only find some under-/over-translation errors in original
sentence translations, while SIT finds general errors in translations
of both original sentences and their derived similar sentences. [97]
requires input sentences with specialized structures and thus it
cannot detect any errors using our datasets.

4.4 Translation Error Reported by SIT

SIT is capable of finding translation errors of diverse kinds. In our
experiments with Google Translate and Bing Microsoft Translator,
we mainly find 5 kinds of translation errors: under-translation, over-
translation, incorrect modification, word/phrase mistranslation, and
unclear logic. The error types are derived from error classification
methods for machine translation. Each of the five is a subset of
lexical, syntactic, or semantic errors [34]. We rename them in a
more intuitive manner to aid the readers. To provide a glimpse
of the diversity of the uncovered errors, this section highlights
examples for all the 5 kinds of errors. Table 4 presents the statistics
of the translation errors SIT found. Under-translation, word/phrase
mistranslation, and unclear logic account for most of the translation
errors found by SIT.

4.4.1 Under-Translation. If some words are mistakenly untrans-
lated (i.e. do not appear in the translation), it is an under-translation
error. Fig. 6 presents a sentence pair that contains under-translation
error. In this example, "to Congress" is mistakenly untranslated,
which leads to target sentences of different semantic meaning.
Specifically, "lying to Congress" is illegal while "lying" is just an in-
appropriate behavior. Likewise, the real-world example introduced
in Section 2 is caused by an under-translation error.

After pleading guilty in the Manhattan probe, Cohen also later pleaded

Source guilty to lying to Congress in a case brought by Mueller's website.
Target TESPATTAE FINTRS, R ELIG A ol R 48D AN ok i i ) — i 221 v (it i

FAHARE, (by Bing)

Target | After pleading guilty in the Manhattan probe, Cohen also later pleaded
meaning | guilty to lying in a case brought by Mueller's website.

Figure 6: Example of under-translation errors detected.

4.4.2 Over-Translation. If some words are unnecessarily translated
multiple times or some words in the target sentence are not trans-
lated from any words in the source sentence, it is an over-translation
error. In Fig. 7, "thought” in the target sentence is not translated
from any words in the source sentence, so it is an over-translation
error. Interestingly, we found that an over-translation error often
happens along with some other kinds of errors. The example also
contains an under-translation error because "were right" in the
source sentence is mistakenly untranslated. In the second exam-
ple in Fig. 2, the word "a" is unnecessarily translated twice, which
makes it an over-translation error.

Source | The investigators were right that the airplane itself was safe.

Target | H#&E AN WA R 2241 . (by Google)

Target

Thei tigat h ht that the airplane itself fe.
meaning e investigators thought that the airplane itself was safe

Figure 7: Example of over-translation errors detected.



4.4.3 Incorrect Modification. If some modifiers modify the wrong
element in the sentence, it is an incorrect modification error. In
Fig. 8, the modifier "new" modifies "auto manufacturing” in the
source sentence. However, Google Translate thinks that "new"
should modify "hub." In Fig. 2, the third example also shows an
interesting incorrect modification error. In this example ("prisoners
of privilege"), "privilege" modifies "prisoners" in the source sen-
tence, while Google Translate thinks "prisoners" should modify
"privilege" We think that in the training data of the NMT model,
there are some phrases with the similar pattern: "A of B, where A
modifies B, which leads to an incorrect modification error in this
scenario. Interestingly, the original source sentence that triggers
this error is "But even so, they remain bastions of privilege" In the
original sentence, "bastions" modifies "privilege,’ which fits the sup-
posed archetype. As we might expect, this sentence is correctly
translated by Google Translate.

The South has emerged as f new auto manufacturin
Source | foreign makers thanks to lower manufacturing costs and less powerful
businesses.

H TS RO AL 55 AR 2 K, B LR A I B v A

Target &ty (by Google)
Target The South has emerged as a new hub of auto manufacturing by
meaging foreign makers thanks to the reducing manufacturing costs and less

powerful businesses.

Figure 8: Example of incorrect modification errors detected.

4.4.4 Word/phrase Mistranslation. If some tokens or phrases are
incorrectly translated in the target sentence, it is a word/phrase
mistranslation error. Fig. 9 presents two main sub-categories of this
kind of error: (1) ambiguity of polysemy and (2) wrong translation.

Ambiguity of polysemy. Each token/phrase may have multiple
correct translations. For example, admit means "allow somebody
to join an organization" or "agree with something unwillingly."
However, usually in a specific semantic context (e.g., a sentence), a
token/phrase only has one correct translation. Modern translation
software does not perform well on polysemy. In the first example
in Fig. 9, Google Translate thinks the "admit" in the source sen-
tence refers to "agree with something unwillingly," leading to a
token/phrase mistranslation error.

Wrong translation. A token/phrase could also be incorrectly
translated to another meaning that seems semantically unrelated.
For example, in the second example in Fig. 9, Bing Microsoft Transla-
tor thinks "South" refers to "South Korea," leading to a word/phrase
mistranslation error.

4.4.5 Unclear Logic. If all the tokens/phrases are correctly trans-
lated but the sentence logic is incorrect, it is an unclear logic error.
In Fig. 10, Google Translate correctly translates "serving in the
elected office” and "country." However, Google Translate generates
"serving in the elected office as a country” instead of "serving the
country in elected office” because Google Translate does not un-
derstand the logical relation between them. Unclear logic errors
exist widely in translations given by NMT models, which is to some
extent a sign of whether a model truly understands certain semantic
meanings.
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The most elite public universities admit a considerably larger percentage
Source | of students from lower income backgrounds than do the elite private
schools.
Target ORGSR AN RAEAGN, G RE SRS EASAR b, AR AR HE 1 2 i 15
%, (by Google)
Target The most elite public universities agree unwillingly that considerably
mear?in larger percentage of students from lower income backgrounds than do
9 the elite private schools.
Source The South has emerged as a hub of new auto manufacturing by foreign
makers thanks to lower manufacturing costs and less powerful unions.
Target TS AR, TS )8e89, T LA A E 5 s v R il
4L, (by Bing)
Target The South Korea has emerged as a hub of new auto manufacturing by
g. foreign makers thanks to lower manufacturing costs and less powerful
meaning unions

Figure 9: Examples of word/phrase mistranslation errors de-
tected.

And attacking a dead man who spent five years as a prisoner of war and
Source | another three decades serving the country in elected office, is simply

wrong.

IFHBGE—ABEERIN, MAER S PR N TR, 54 =R

Target K e e b e
9| Rt EE, ERFEAHIRY. (by Google)
Target And attacking a dead man who spent five years as a prisoner of war and
: another three decades serving in elected office as a country, is simply
meaning

wrong.

Figure 10: Example of unclear logic errors detected.

4.4.6 Sentences with Multiple Translation Errors. A certain per-
centage of reported sentence pairs contain multiple translation
errors. Fig. 11 presents a sentence pair that contains three kinds
of errors. Specifically, "covering" means "reporting news" in the
source sentence. However, it is translated to "holding," leading to
a word/phrase mistranslation error. Additionally, "church” in the
target sentence is not the translation of any words from the source
sentence, so it is an over-translation error. Bing Microsoft transla-
tor also wrongly thinks the subject is "attending a funeral train."
But the source sentence actually means the subject is "covering a
funeral train," so it is an unclear logic error.

Errors word/phrase logic over

Covering a memorial service in the nation's capital and then traveling to
Source | Texas for another service as well as a funeral train was an honor, he
says.

i, fEREEHBITERS, RERTEEMNSINA —RALFGULL K2R

Target : o -
9| iLsi%e, R—mEPE, (by Bing)

Target Holding a memorial service in the nation's capital and then traveling to

meaning Texas for attending another church service and a funeral train was an

honor, he says.

Figure 11: Example of sentence with multiple translation er-
rors detected.
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4.5 The Running Time of SIT

In this section, we evaluate the running time of SIT on the two
datasets. We apply SIT with 3 different sentence structure represen-
tations to test Google Translate and Bing Microsoft Translator. We
run each experiment setting 10 times and report their average as
the results. The overall running time of SIT is illustrated in Table 5,
and the running time of each step of SIT on Google Translate is
presented in Fig. 12 (Bing’s result is similar). We can observe that
SIT using raw sentences as structure representation is the fastest.
This is because SIT (Raw) does not require any structure represen-
tation generation time. SIT using a dependency parser achieves
comparable running time to SIT (Raw). In particular, SIT (Dep) uses
19 seconds to parse 2000+ sentences (as opposed to 0 seconds by
SIT (Raw)), which we think is efficient and reasonable.

Table 5: Average running time of SIT on Politics and Busi-
ness datasets.

Google \ Bing Running time  Translation time #Sentence Time of other
(sec) (sec) translated SIT steps (sec)
SIT (Raw) 1,469\ 922 1,417\ 870 2,012 52\52
SIT (Constituency) 1,524\ 981 1,417\ 870 2,012 107\ 110
SIT (Dependency) 1,488\ 945 1,417 \870 2,012 71\75

In these experiments, we ran the translation step once per trans-
lation system and reused the translation results in all experiment
settings since the other settings had no impact on translation time.
Thus, in Table 5, the Translation time values are the same for dif-
ferent SIT implementations. We can observe that SIT spends most
of the time collecting translation results. In this step, for each sen-
tence, we invoked the APIs provided by Google and Bing to collect
the translated sentence. In practice, if users want to test their own
machine translation software with SIT, the running time of this
step will be much less. As indicated in a recent study [92], current
NMT model can translate around 20 sentences per second using a
single NVIDIA GeForce GTX 1080 GPU. With more powerful com-
puting resource (e.g, TPU [86]), modern NMT models can achieve
the speed of hundreds of sentences translation per second, which
would be about 2 magnitudes faster than in our experiments.

The other steps of SIT are quite efficient, as indicated in Table 5
and Fig. 12. Both SIT (Raw) and SIT (Dep) took around 1 min and
SIT (Con) took around 2 mins. Compared with SIT (Dep), SIT (Con)
is slower because models for constituency parsing are slower than
those for dependency parsing. We conclude that as a tool working
in an offline manner, SIT is efficient in practice for testing machine
translation software.

4.6 The Impact of Distance Threshold

SIT reports the top-k sentence pairs in an issue if the distance be-
tween the translated generated sentence and the original target
sentence is larger than a distance threshold. Thus, this distance
threshold controls (1) the number of buggy issues reported and
(2) the top-k accuracy of SIT. Intuitively, if we lower the thresh-
old, more buggy issues will be reported, while the accuracy will
decrease. Fig. 13 demonstrates the impact of the distance threshold
on these two factors. In this figure, SIT (Dep) was applied to test

Initialization mRepresentation Generation
mSentence Generation ®Value Comparison

Initialization mRepresentation Generation
mSentence Generation ®Value Comparison

120 120
100 100
% 75 % 75
E 50 E 50
25 25

SIT (Raw) SIT (Con) SIT (Dep)
Running time on Politics dataset

SIT (Raw) SIT (Con) SIT (Dep)
Running time on Business dataset

Figure 12: Running time details of SIT (excluding transla-
tion time) in testing Google Translate.
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Figure 13: Impact of distance threshold when testing Bing
Microsoft Translator.

the Bing Microsoft Translator on our Politics and Business datasets
with different distance thresholds. We can observe that both the
number of buggy issues and top-1 accuracy remain stable when the
threshold is either small or large while the values fluctuate in the
middle. The impact of changing the distance threshold is similar
when testing Google Translate.

Based on these results, we present some guidance on using SIT
in practice. First, if we intend to uncover as many translation er-
rors as possible, we should use a small distance threshold. A small
threshold (e.g., 4 for dependency sets) works well on all our exper-
iment settings. In particular, with a small threshold, SIT reports
the most issues with decent accuracy (e.g., 70% top-1 accuracy). We
adopt this strategy in our accuracy experiments in Section 4.3.2.
Developers could use SIT with small distance threshold when they
want to intensively test software before a release. Second, if we
intend to make SIT as accurate as possible, we could use a large
threshold (e.g., 15). With a large threshold, SIT reports fewer issues
with very high accuracy (e.g., 86% top-1 accuracy). Given that the
number of source sentences are unlimited on the Web, we could
keep running SIT with a large distance threshold and periodically
report issues. Thus, we think SIT is effective and easy to use in
practice.

4.7 Fine-tuning with Errors Reported by SIT

In this section, we study whether the reported buggy sentences can
act as a fine-tuning set to improve the robustness of NMT models.
Fine-tuning is a common practice in NMT, where training data and
target data can often occupy different domains [15, 74]. Specifically,
we train an encoder-decoder model with global attention [51]—a
standard architecture for NMT models—on a subset of the CWMT



corpus with 2M bilingual sentence pairs [16]. The encoder and
decoder are unidirectional single-layer LSTMs. We train the model
using the Adam optimizer [40], calculating the BLEU [67] score on
a held out validation set after each epoch. We use the model with
parameters from the epoch with the best validation BLEU score.
Note that we did not use Google or Bing’s translation models here
because they are not open-source; however, the encoder-decoder
model with attention is a very representative NMT model.

To test the NMT model, SIT is run on 40 English sentences, which
are selected from the validation set of WMT 17 [85] by removing
long sentences (i.e., longer than 12 words) and ensuring that all
words are in the NMT model’s vocabulary. Note that since the
model was not trained or validated on data from this domain, we
simulated the practical scenario where real-world inputs differ from
model training data. Based on these inputs, SIT successfully finds
105 buggy sentences. We label them with correct translations and
fine-tune the NMT model on these 105 sentences for 15 epochs
with a decreasing learning rate. After this fine-tuning, all the 105
sentences can be correctly translated. Meanwhile, the BLEU score
on the original validation set used during training increases by
0.13, which, to some degree, shows that the translation of other
sentences has also been improved. This demonstrates the ability
to fix errors reported by SIT in an efficient and easy manner. SIT’s
utility on building robust machine translation software will be
further elaborated in Section 5.2.

5 DISCUSSIONS
5.1 False Positives

While SIT can accurately detect translation errors, its precision
can be further improved. In particular, the false positives of SIT
come from three main sources. First, the generated sentences may
have strange semantic meanings, leading to changes in the target
sentence structure. For example, based on the phrase "on the way,'
the current implementation of SIT could generate the sentence "on
the fact, which naturally has a very different translation in Chinese.
Using BERT, which at the time of our experiments provided the
state-of-the-art masked language model, helped alleviate this issue.
Second, although the existing syntax parsers are highly accurate,
they may produce wrong constituency or dependency structures,
which can lead to erroneous reported errors. Third, a source sen-
tence could have multiple correct translations of different sentence
structures. For example, target sentence "10 years from now" and
"after 10 years" can be used interchangeably while their sentence
structures are different. To lower the impact of these factors, SIT
returns the top-k suspicious sentence pairs ranked by distance to
the original target sentence.

5.2 Building Robust Translation Software

The ultimate goal of testing machine translation, similar to test-
ing traditional software, is to build robust software. Toward this
end, SIT’s utility is as follows. First, the reported mistranslations
typically act as early alarms, and thus developers can hard-code
translation mappings in advance, which is the quickest bug fixing
solution adopted in industry. Second, the reported sentences could
be used as a fine-tuning set, which has been discussed in Section 4.7.
Third, developers may find the reported buggy sentence pairs useful
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for further analysis/debugging since the sentences in each pair only
differ by one word. This resembles debugging traditional software
via input minimization/localization. Additionally, the structural
invariance concept could be utilized as inductive bias to design
robust NMT models, similar to how Shen et al. [75] introduce bias
to standard LSTMs. Compared with traditional software, the de-
bugging and bug fixing process of machine translation software is
more difficult because the logic of an NMT model mainly lies in its
model structure and parameters. While this is not the main focus
of our work, we believe it is an important research direction for
future work.

6 RELATED WORK
6.1 Robustness of Al Software

The success of deep learning models has led to the wide adoption
of artificial intelligence (AI) software in our daily lives. Despite
their high accuracies, deep learning models can generate inferior
results, some of which have even lead to fatal accidents [42, 45, 100].
Recently, researchers have designed a variety of approaches to at-
tack deep learning (DL) systems [3, 6, 7, 20, 29, 89, 91]. To protect
DL systems against these attacks, excellent research has been con-
ducted to test DL systems [21, 26, 33, 39, 53, 54, 68, 69, 79, 88, 94, 95],
assist the debugging process [55], detect adversarial examples on-
line [56, 77, 84, 90], or train networks in a robust way [38, 49, 58, 66].
Compared with these approaches, our paper focuses on machine
translation systems, which these works do not explore. In addition,
most of these approaches require knowledge of gradients or acti-
vation values in the neural network under test (white-box), while
our approach does not require any internal details of the model
(black-box).

6.2 Robustness of NLP Algorithms

Deep neural networks have boosted the performance of many NLP
tasks , such as reading comprehension [9, 10], code analysis [1,
35, 70], and machine translation [32, 83, 86]. However, in recent
years, inspired by the work on adversarial examples in the computer
vision field, researchers successfully found bugs produced by the
neural networks used for various NLP systems [2, 8, 36, 36, 37, 46,
61, 62, 72]. Compared with our approach, these works focus on
simpler tasks such as text classification.

Zheng et al. [96] introduced two algorithms to detect two specific
translation errors: under-translation and over-translation, respec-
tively. Comparatively, our proposed approach is more systematic
and not limited to specific errors. Based on the experimental results,
we can find the following errors: under-translation, over-translation,
incorrect modification, ambiguity of polysemy, and unclear logic.
Zhou and Sun [97] proposed a metamorphic testing approach (i.e.,
MT4MT) for machine translation; they followed a concept similar
to structural invariance. However, MT4MT can only be used with
simple sentences in a subject-verb-object pattern (e.g., "Tom likes
Nike"). In particular, they change a person name or a brand name
in a sentence and check whether the translation differs by more
than one token. Thus, MT4MT cannot report errors from most real-
world sentences, such as the data set used in our paper. In addition,
MT4MT does not propose general techniques to realize their idea.
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Our work introduces an effective realization via nontrivial tech-
niques (e.g., adapting BERT for word substitution and leveraging
language parsers for generating sentence structures), and conducts
an extensive evaluation.

6.3 Machine Translation

The past few years have witnessed rapid growth for neural machine
translation (NMT) architectures [32, 86]. Typically, an NMT model
uses an encoder-decoder framework with attention [92]. Under this
framework, researchers have designed various advanced neural
network architectures, ranging from recurrent neural networks
(RNN) [52, 76], convolutional neural networks (CNN) [27, 28], to
full attention networks without recurrence or convolution [83].
These existing papers aim at improving the capability of NMT
models. Different from them, this paper focuses on the robustness
of NMT models. We believe robustness is as important as accuracy
for machine translation in practice. Thus, our proposed approach
can complement existing machine translation research.

6.4 Metamorphic Testing

Metamorphic testing is a way of generating test cases based on
existing ones [12, 13, 73]. The key idea is to detect violations of
domain-specific metamorphic relations across outputs from multi-
ple runs of the program with different inputs. Metamorphic test-
ing has been applied for testing various traditional software, such
as compilers [43, 47], scientific libraries [93], and database sys-
tems [50]. Due to its effectiveness on testing "non-testable" pro-
grams, researchers have also used it to test Al software, such as
statistical classifiers [63, 87], search engines [98], and autonomous
cars [79, 95]. In this paper, we introduce structure-invariant test-
ing, a novel, widely applicable metamorphic testing approach, for
machine translation software.

7 CONCLUSION

We have presented structure-invariant testing (SIT), a new, effective
approach for testing machine translation software. The distinct
benefits of SIT are its simplicity and generality, and thus wide
applicability. SIT has been applied to test Google Translate and
Bing Microsoft Translators, and successfully found 64 and 70 buggy
issues with 69.5% and 70% top-1 accuracy, respectively. Moreover, as
a general methodology, SIT can uncover diverse kinds of translation
errors that cannot be found by state-of-the-art approaches. We
believe that this work is the important, first step toward systematic
testing of machine translation software. For future work, we will
continue refining the general approach and extend it to other AI
software (e.g., figure captioning tools and face recognition systems).
We will also launch an extensive effort to help continuously test
and improve widely-used translation systems.
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